Горючее вещество, которое сжигается для получения значительного количества тепла, называется топливом. Различают естественное и искусственное топливо. Естественное топливо используют в том виде, в котором его добывают (каменный уголь, торф, нефть, дрова и т. д.). Искусственное топливо перед сжиганием подвергается переработке. К нему относят дизельное топливо, мазут, бензин, кокс и т. д.
По физическим признакам топливо, сжигаемое в судовых паровых котлах, делится на твердое и жидкое. В качестве твердого топлива в судовых паровых котлах используют каменный уголь, антрацит, иногда дрова; в качестве жидкого — флотский мазут марок Ф5, Ф12, а также непарафинистый топочный мазут 40. В паровых котлах малой производительности обычно применяется дизельное топливо.
Горением называется процесс окисления горючих элементов топлива, сопровождающийся интенсивным выделением тепла. Для обеспечения горения в топку котла необходимо подавать топливо и воздух в определенных количествах. Кислород, содержащийся в воздухе, обеспечивает окислительный процесс, в результате чего образуются . продукты сгорания — дымовые газы.
Процесс горения топлива в топке котла сопровождается выделением большого количества тепла, часть которого теряется бесполезно (например, тепло, уходящее с дымовыми газами; тепло, отдаваемое в окружающую атмосферу нагретыми частями котла и дымоходов; тепло, уходящее с водой при осуществлении верхней и нижней продувки и т. п.). Принимаются различные меры для уменьшения потерь, но избежать их полностью не удается. Существуют и другие потери, которые зависят от протекания процесса сгорания в топке, от полноты сгорания топлива и от эффективности использования тепла образующихся продуктов сгорания.
Сгорание в топке может быть полным и неполным. Полным оно считается тогда, когда в результате горения горючих элементов топлива (в основном С и Н) получается углекислый газ С02 и водяные пары, которые больше не способны участвовать в окислительном процессе, т. е. гореть и выделять тепло.
При неполном сгорании получаются промежуточные продукты, способные при определенных условиях к дальнейшему окислению, в основном это окись углерода СО, водород Н2 и метан СН4. Они обладают большой теплотворной способностью, поэтому присутствие всего лишь 1 % окиси углерода в уходящих газах влечет за собой потерю тепла до 5—6 %.
Теоретически для сгорания 1 кг топлива необходимо 14 кг, или около И м3 воздуха. Практически этого количества воздуха недостаточно для обеспечения полного сгорания топлива, потому что частицы топлива и воздуха перемешиваются недостаточно хорошо и не весь кислород, поступающий в топку, вступает в реакцию с топливом. Для обеспечения нормального сгорания топлива приходится подавать в топки котлов несколько большее количество воздуха. Эта разница учитывается коэффициентом избытка воздуха, который определяется как отношение количества воздуха, действительно подаваемого в топку для сжигания 1 кг топлива, к количеству воздуха, теоретически необходимому для этой цели.
a = Vд / Vо ,
где а — коэффициент избытка воздуха (всегда больше единицы); Vд — действительное количество воздуха, м3; Vо — теоретически необходимое количество воздуха, м3.
Коэффициент избытка воздуха зависит от сорта топлива, способа его сжигания, технического состояния котельных форсунок, конструкции топки, режима работы котла и т. д. (например, коэффициент избытка воздуха при сжигании мазута — 1,15—1,3). Выбирая значение а, следует учитывать, что недостаток воздуха приводит к неполному сгоранию, потере тепла и перерасходу топлива. Большой избыток воздуха может привести к еще большим потерям, так как сильно понижает температуру в топке, что способствует образованию значительного количества окиси углерода СО. Кроме того, избыточный воздух увеличивает количество продуктов сгорания в топке, которые, нагреваясь и уходя в дымовую трубу, уносят значительное количество тепла, тем самым увеличивая потери с уходящими газами.
В судовых паровых котлах различают два основных способа сжигания топлива в топках — слоевой и факельный.
Слоевой способ сжигания топлива наблюдается только при сжигании угля и в практике на судах используется очень редко.
При факельном способе сжигания частицы топлива непрерывно движутся во взвешенном состоянии в окружении воздуха и газов, температура которых выше температуры самовоспламенения данного горючего вещества. Этот способ используется при сжигании жидкого топлива в паровых котлах. Под факелом подразумевают газовоздушную струю с распределенными в ней испаряющимися и горящими частицами топлива.
Топки паровых котлов разделяются на слоевые и камерные. Слоевые топки служат для сжигания твердого топлива, уложенного на колосниковой решетке равномерным слоем. Они могут быть с ручным обслуживанием и механизированные (частично или полностью). Камерные топки предназначены для сжигания распыленного жидкого топлива в потоке подаваемого воздуха. При этом в процессе горения образуется факел.
Топочное устройство предназначено для подачи жидкого топлива в топку котла, его распыливания и смешивания с воздухом в топочном объеме. Каждое топочное устройство состоит из форсунки, воздухонаправляющего устройства, системы включения форсунки и управления ею, регуляторов и заслонок (шиберов), а также топливных трубопроводов и арматуры. Основными узлами являются форсунки и воздухонаправляющие устройства. Обычно форсунки устанавливают внутри воздухонаправляющего устройства, которое монтируется на фронтовой топочной раме котла.
Большинство топочных устройств, используемых на морских судах, можно разделить на три группы: с паровыми и воздушными форсунками; с механическими центробежными форсунками; с механическими вращающимися (ротационными) форсунками.
Правилами Регистра СССР предъявляются определенные требования к топочным устройствам. Все оборудование, предназначенное для топочных устройств, должно быть одобрено Регистром СССР и изготовлено под наблюдением его или другого компетентного органа, признанного Регистром СССР. Конструкции форсунок должны обеспечивать возможность регулирования их производительности, следовательно, и паропроизводительности котла, т. е. иметь устройство для регулирования количества воздуха, подаваемого в топку.
Автоматические топочные устройства должны обязательно иметь ручное управление. Отключение топочного устройства должно предусматриваться с двух мест, одно из которых должно обязательно находиться вне котельного отделения.
Форсунки, устанавливаемые в котлах, подразделяются на паровые, у которых топливо распыливается под действием кинетической энергии струи пара; механические (центробежные), у которых распыливание топлива осуществляется под давлением (они могут быть регулируемыми и нерегулируемыми, т. е. допускают или не допускают регулирование их производительности); паромеханические, у которых распыливание топлива осуществляется под действием кинетической энергии струи пара и давления топлива; вращающиеся (ротационные), у которых топливо распыливается под действием центробежной силы, возникающей при вращении стакана форсунки.
Паровые форсунки в свое время получили довольно широкое распространение на судах из-за простоты устройства и обслуживания. Они обеспечивают хорошее качество распыливания и легко регулируются. При правильном регулировании процесса горения коэффициент избытка воздуха составляет 1,07— 1,10, а потери от химического недожога — 0—0,2%. Несмотря на такие преимущества, паровые форсунки практически не используют на морских судах из-за большого расхода пара на распыливание мазута (2—5 % от паропроизводительности котла). Их применяют лишь на портовых буксирах, судах прибрежного плавания и на речном флоте.
На промысловом флоте широко применяют механические центробежные и ротационные форсунки.
Распыливание мазута в механических центробежных форсунках осуществляется в результате большой скорости истечения его из сопла. Механические центробежные форсунки бывают регулируемые и нерегулируемые. У регулируемых форсунок производительность изменяется в процессе работы.
На рисунке выше показана одна из простейших конструкций механической нерегулируемой центробежной форсунки фирмы «Тодд». Она состоит из полого корпуса 4, имеющего наружную резьбу на обоих концах. На один конец корпуса навинчивается рукоятка 5, имеющая канал для подвода мазута, на другой — корпус сопла 3 с отверстиями 6. К корпусу сопла с помощью гайки 2 крепится распыливающая шайба 1 с тангенциальными канавками. Плоскости прилегания сопла и распыливающей шайбы должны быть тщательно притерты друг к другу. Распы-ливающие шайбы изготовливаются из хромоникелевой или хро-мовольфрамовой стали. Корпус форсунки выполнен толстостенным в связи с тем, что мазут может подаваться под большим давлением. Размер соплового отверстия каналов позволяет изменять производительность форсунки.
Шайбы изготавливаются по номерам. Каждый номер соответствует определенной производительности, которая указывается в судовой технической документации. Для улучшения качества распиливания мазут необходимо предварительно подогревать до температуры 90—115 С (в зависимости от его марки).
Такая механическая форсунка позволяет некоторое регулирование без замены распыливающих шайб (за счет изменения давления мазута). Так, при увеличении давления от 1,0 до 2,0 МПа производительность форсунки увеличивается примерно в 1,5 раза. Если такое регулирование является недостаточным, прибегают к замене шайб. Расход энергии на работу механических центробежных форсунок в 20—30 раз меньше, чем у паровых.
Использование топочного устройства с форсункой типа «Тодд» позволяет добиться нормального сгорания топлива при коэффициенте избытка воздуха 1,12—1,15. При этом потери тепла от химического недожога находятся в пределах 0—0,3 %. Показатели несколько хуже, чем у паровых форсунок, но это окупается значительно меньшим расходом энергии на их работу.
На рисунке выше показана паромеханическая форсунка конструкции СКБК (специализированное конструкторское бюро котлостроения), которая состоит из корпуса 11 с рукояткой 10 и наконечника 7 с наружной резьбой. Корпус и наконечник соединяются топливной 8 и паровой 9 трубами, которые крепятся при помощи сварки. На наконечник навинчивается стопорное кольцо 6 и накидная гайка 4. Между ними устанавливается уплотнение 5, которое служит для предотвращения подтекания мазута по резьбе. Уплотнение при необходимости поджимается стопорным кольцом 6, чем достигается необходимая плотность соединения. Накидная гайка служит для установки и крепления в определенном положении сопла 1, распылителя 2 и шайбы 3 к торцевой поверхности наконечника 7. Все указанные детали должны быть тщательно обработаны, а прилегающие поверхности притерты друг к другу.
Распылитель включает в себя топливную вихревую камеру и имеет с обеих сторон по четыре тангенциальных канала шириной 1 мм со стороны паровой части и 1,8 мм с топливной. По окружности распылителя расположены восемь продольных каналов радиусом 2 мм для прохода пара. При сборке топливный ниппель распылителя входит в отверстие сопла, образуя кольцевой зазор. Шайба распылителя 3 устанавливается между самим распылителем и наконечником 7. В ней имеется восемь топливных отверстий диаметром 1,8 мм и восемь продольных каналов радиусом 2 мм (по наружному диаметру). В наконечнике имеется два канала для прохода топлива и пара.
Топливо по каналу в корпусе, топливной трубе и каналу в наконечнике подается к шайбе 3. Через цилиндрическое отверстие в шайбе мазут поступает к тангенциальным каналам распылителя, по ним в вихревую камеру, из которой через прожимное отверстие топливного ниппеля распылителя выходит из форсунки распыленным, вращаясь с большой частотой.
Пар подходит по каналу в корпусе, паровой трубе и каналу в наконечнике к шайбе 3 распылителя. Пройдя по продольным каналам в шайбе и таким же каналам в распылителе 2, затем по четырем тангенциальным каналам, выполненным в распылителе с другой стороны, пар попадает в полость, ограниченную поверхностью сопла, распылителя и наружной стороной ниппеля. Отсюда через кольцевой зазор, образуемый отверстием в сопле и ниппеле, пар с большой скоростью выходит из форсунки, подхватывая капли топлива, выходящие из топливного отверстия ниппеля. В процессе истечения пара и топлива капли последнего дробятся на мельчайшие частицы, что способствует их хорошему перемешиванию с воздухом.
Достоинства паромеханических форсунок следующие: высокое качество распыливания мазута; .достаточно широкие пределы регулирования производительности (10—100%); возможность работы с низким коэффициентом избытка воздуха (до 1,02—1,04); малая склонность к закоксовыванию выходных отверстий, так как они периодически могут продуваться паром.
Расход пара в паромеханических форсунках (0,05—0,15 кг/кг топлива) значительно меньший, чем в обычных паровых, что очень важно для промысловых судов. Эти форсунки широко используются в паровых котлах.
Ротационные форсунки также получили широкое распространение на промысловых судах. Для их использования не требуется расхода пара на распыливание мазута, при этом достигается удовлетворительное качество распыливания топлива во всех диапазонах нагрузок (от 5 до 100%).
Распыливающая головка ротационной форсунки:
Основной частью ротационных форсунок является распыливающая головка. Она состоит из стакана 1, закрепленного на валу 6 при помощи крестовины 5 и вращающегося с частотой 5000— 7000 об/мин. Внутренняя поверхность стакана имеет небольшую конусность, вследствие чего мазут перемещается по ней в сторону топки. Топливо под давлением 0,05— 0,07 МПа подводится по неподвижно закрепленной трубе 7 в кольцевую полость и через отверстие 4 равномерно поступает на внутреннюю поверхность стакана.
Достигая выходной кромки, пленка мазута под действием центробежной силы образует конус распыливания. Первичный воздух подается в кольцевой канал 3, образованный неподвижным корпусом воздухонаправляющего устройства 8 и вращающимся стаканом 1. Воздух входит к топку через кольцевое воздушное сопло 9 с большой скоростью (60—80 м/с), что способствует хорошему смесеобразованию. Часто в кольцевом канале 3 устанавливают тангенциальные лопатки 2 для завихрения первичного воздуха.
Мазут и воздух предварительно подогревают. Температура нагрева мазута 70—90 С. Первичный воздух подается под давлением 3,5—4 кПа, вторичный — под давлением 0,3—0,4 кПа. Воздух к форсункам подается различными способами в зависимости от конструкции паросиловой установки. Иногда топливо на внутреннюю поверхность стакана подается по отверстию во вращающемся валу.
По физическим признакам топливо, сжигаемое в судовых паровых котлах, делится на твердое и жидкое. В качестве твердого топлива в судовых паровых котлах используют каменный уголь, антрацит, иногда дрова; в качестве жидкого — флотский мазут марок Ф5, Ф12, а также непарафинистый топочный мазут 40. В паровых котлах малой производительности обычно применяется дизельное топливо.
Горением называется процесс окисления горючих элементов топлива, сопровождающийся интенсивным выделением тепла. Для обеспечения горения в топку котла необходимо подавать топливо и воздух в определенных количествах. Кислород, содержащийся в воздухе, обеспечивает окислительный процесс, в результате чего образуются . продукты сгорания — дымовые газы.
Процесс горения топлива в топке котла сопровождается выделением большого количества тепла, часть которого теряется бесполезно (например, тепло, уходящее с дымовыми газами; тепло, отдаваемое в окружающую атмосферу нагретыми частями котла и дымоходов; тепло, уходящее с водой при осуществлении верхней и нижней продувки и т. п.). Принимаются различные меры для уменьшения потерь, но избежать их полностью не удается. Существуют и другие потери, которые зависят от протекания процесса сгорания в топке, от полноты сгорания топлива и от эффективности использования тепла образующихся продуктов сгорания.
Сгорание в топке может быть полным и неполным. Полным оно считается тогда, когда в результате горения горючих элементов топлива (в основном С и Н) получается углекислый газ С02 и водяные пары, которые больше не способны участвовать в окислительном процессе, т. е. гореть и выделять тепло.
При неполном сгорании получаются промежуточные продукты, способные при определенных условиях к дальнейшему окислению, в основном это окись углерода СО, водород Н2 и метан СН4. Они обладают большой теплотворной способностью, поэтому присутствие всего лишь 1 % окиси углерода в уходящих газах влечет за собой потерю тепла до 5—6 %.
Теоретически для сгорания 1 кг топлива необходимо 14 кг, или около И м3 воздуха. Практически этого количества воздуха недостаточно для обеспечения полного сгорания топлива, потому что частицы топлива и воздуха перемешиваются недостаточно хорошо и не весь кислород, поступающий в топку, вступает в реакцию с топливом. Для обеспечения нормального сгорания топлива приходится подавать в топки котлов несколько большее количество воздуха. Эта разница учитывается коэффициентом избытка воздуха, который определяется как отношение количества воздуха, действительно подаваемого в топку для сжигания 1 кг топлива, к количеству воздуха, теоретически необходимому для этой цели.
a = Vд / Vо ,
где а — коэффициент избытка воздуха (всегда больше единицы); Vд — действительное количество воздуха, м3; Vо — теоретически необходимое количество воздуха, м3.
Коэффициент избытка воздуха зависит от сорта топлива, способа его сжигания, технического состояния котельных форсунок, конструкции топки, режима работы котла и т. д. (например, коэффициент избытка воздуха при сжигании мазута — 1,15—1,3). Выбирая значение а, следует учитывать, что недостаток воздуха приводит к неполному сгоранию, потере тепла и перерасходу топлива. Большой избыток воздуха может привести к еще большим потерям, так как сильно понижает температуру в топке, что способствует образованию значительного количества окиси углерода СО. Кроме того, избыточный воздух увеличивает количество продуктов сгорания в топке, которые, нагреваясь и уходя в дымовую трубу, уносят значительное количество тепла, тем самым увеличивая потери с уходящими газами.
В судовых паровых котлах различают два основных способа сжигания топлива в топках — слоевой и факельный.
Слоевой способ сжигания топлива наблюдается только при сжигании угля и в практике на судах используется очень редко.
При факельном способе сжигания частицы топлива непрерывно движутся во взвешенном состоянии в окружении воздуха и газов, температура которых выше температуры самовоспламенения данного горючего вещества. Этот способ используется при сжигании жидкого топлива в паровых котлах. Под факелом подразумевают газовоздушную струю с распределенными в ней испаряющимися и горящими частицами топлива.
Топки паровых котлов разделяются на слоевые и камерные. Слоевые топки служат для сжигания твердого топлива, уложенного на колосниковой решетке равномерным слоем. Они могут быть с ручным обслуживанием и механизированные (частично или полностью). Камерные топки предназначены для сжигания распыленного жидкого топлива в потоке подаваемого воздуха. При этом в процессе горения образуется факел.
Топочное устройство предназначено для подачи жидкого топлива в топку котла, его распыливания и смешивания с воздухом в топочном объеме. Каждое топочное устройство состоит из форсунки, воздухонаправляющего устройства, системы включения форсунки и управления ею, регуляторов и заслонок (шиберов), а также топливных трубопроводов и арматуры. Основными узлами являются форсунки и воздухонаправляющие устройства. Обычно форсунки устанавливают внутри воздухонаправляющего устройства, которое монтируется на фронтовой топочной раме котла.
Большинство топочных устройств, используемых на морских судах, можно разделить на три группы: с паровыми и воздушными форсунками; с механическими центробежными форсунками; с механическими вращающимися (ротационными) форсунками.
Правилами Регистра СССР предъявляются определенные требования к топочным устройствам. Все оборудование, предназначенное для топочных устройств, должно быть одобрено Регистром СССР и изготовлено под наблюдением его или другого компетентного органа, признанного Регистром СССР. Конструкции форсунок должны обеспечивать возможность регулирования их производительности, следовательно, и паропроизводительности котла, т. е. иметь устройство для регулирования количества воздуха, подаваемого в топку.
Автоматические топочные устройства должны обязательно иметь ручное управление. Отключение топочного устройства должно предусматриваться с двух мест, одно из которых должно обязательно находиться вне котельного отделения.
Форсунки, устанавливаемые в котлах, подразделяются на паровые, у которых топливо распыливается под действием кинетической энергии струи пара; механические (центробежные), у которых распыливание топлива осуществляется под давлением (они могут быть регулируемыми и нерегулируемыми, т. е. допускают или не допускают регулирование их производительности); паромеханические, у которых распыливание топлива осуществляется под действием кинетической энергии струи пара и давления топлива; вращающиеся (ротационные), у которых топливо распыливается под действием центробежной силы, возникающей при вращении стакана форсунки.
Паровые форсунки в свое время получили довольно широкое распространение на судах из-за простоты устройства и обслуживания. Они обеспечивают хорошее качество распыливания и легко регулируются. При правильном регулировании процесса горения коэффициент избытка воздуха составляет 1,07— 1,10, а потери от химического недожога — 0—0,2%. Несмотря на такие преимущества, паровые форсунки практически не используют на морских судах из-за большого расхода пара на распыливание мазута (2—5 % от паропроизводительности котла). Их применяют лишь на портовых буксирах, судах прибрежного плавания и на речном флоте.
На промысловом флоте широко применяют механические центробежные и ротационные форсунки.
Распыливание мазута в механических центробежных форсунках осуществляется в результате большой скорости истечения его из сопла. Механические центробежные форсунки бывают регулируемые и нерегулируемые. У регулируемых форсунок производительность изменяется в процессе работы.
На рисунке выше показана одна из простейших конструкций механической нерегулируемой центробежной форсунки фирмы «Тодд». Она состоит из полого корпуса 4, имеющего наружную резьбу на обоих концах. На один конец корпуса навинчивается рукоятка 5, имеющая канал для подвода мазута, на другой — корпус сопла 3 с отверстиями 6. К корпусу сопла с помощью гайки 2 крепится распыливающая шайба 1 с тангенциальными канавками. Плоскости прилегания сопла и распыливающей шайбы должны быть тщательно притерты друг к другу. Распы-ливающие шайбы изготовливаются из хромоникелевой или хро-мовольфрамовой стали. Корпус форсунки выполнен толстостенным в связи с тем, что мазут может подаваться под большим давлением. Размер соплового отверстия каналов позволяет изменять производительность форсунки.
Шайбы изготавливаются по номерам. Каждый номер соответствует определенной производительности, которая указывается в судовой технической документации. Для улучшения качества распиливания мазут необходимо предварительно подогревать до температуры 90—115 С (в зависимости от его марки).
Такая механическая форсунка позволяет некоторое регулирование без замены распыливающих шайб (за счет изменения давления мазута). Так, при увеличении давления от 1,0 до 2,0 МПа производительность форсунки увеличивается примерно в 1,5 раза. Если такое регулирование является недостаточным, прибегают к замене шайб. Расход энергии на работу механических центробежных форсунок в 20—30 раз меньше, чем у паровых.
Использование топочного устройства с форсункой типа «Тодд» позволяет добиться нормального сгорания топлива при коэффициенте избытка воздуха 1,12—1,15. При этом потери тепла от химического недожога находятся в пределах 0—0,3 %. Показатели несколько хуже, чем у паровых форсунок, но это окупается значительно меньшим расходом энергии на их работу.
На рисунке выше показана паромеханическая форсунка конструкции СКБК (специализированное конструкторское бюро котлостроения), которая состоит из корпуса 11 с рукояткой 10 и наконечника 7 с наружной резьбой. Корпус и наконечник соединяются топливной 8 и паровой 9 трубами, которые крепятся при помощи сварки. На наконечник навинчивается стопорное кольцо 6 и накидная гайка 4. Между ними устанавливается уплотнение 5, которое служит для предотвращения подтекания мазута по резьбе. Уплотнение при необходимости поджимается стопорным кольцом 6, чем достигается необходимая плотность соединения. Накидная гайка служит для установки и крепления в определенном положении сопла 1, распылителя 2 и шайбы 3 к торцевой поверхности наконечника 7. Все указанные детали должны быть тщательно обработаны, а прилегающие поверхности притерты друг к другу.
Распылитель включает в себя топливную вихревую камеру и имеет с обеих сторон по четыре тангенциальных канала шириной 1 мм со стороны паровой части и 1,8 мм с топливной. По окружности распылителя расположены восемь продольных каналов радиусом 2 мм для прохода пара. При сборке топливный ниппель распылителя входит в отверстие сопла, образуя кольцевой зазор. Шайба распылителя 3 устанавливается между самим распылителем и наконечником 7. В ней имеется восемь топливных отверстий диаметром 1,8 мм и восемь продольных каналов радиусом 2 мм (по наружному диаметру). В наконечнике имеется два канала для прохода топлива и пара.
Топливо по каналу в корпусе, топливной трубе и каналу в наконечнике подается к шайбе 3. Через цилиндрическое отверстие в шайбе мазут поступает к тангенциальным каналам распылителя, по ним в вихревую камеру, из которой через прожимное отверстие топливного ниппеля распылителя выходит из форсунки распыленным, вращаясь с большой частотой.
Пар подходит по каналу в корпусе, паровой трубе и каналу в наконечнике к шайбе 3 распылителя. Пройдя по продольным каналам в шайбе и таким же каналам в распылителе 2, затем по четырем тангенциальным каналам, выполненным в распылителе с другой стороны, пар попадает в полость, ограниченную поверхностью сопла, распылителя и наружной стороной ниппеля. Отсюда через кольцевой зазор, образуемый отверстием в сопле и ниппеле, пар с большой скоростью выходит из форсунки, подхватывая капли топлива, выходящие из топливного отверстия ниппеля. В процессе истечения пара и топлива капли последнего дробятся на мельчайшие частицы, что способствует их хорошему перемешиванию с воздухом.
Достоинства паромеханических форсунок следующие: высокое качество распыливания мазута; .достаточно широкие пределы регулирования производительности (10—100%); возможность работы с низким коэффициентом избытка воздуха (до 1,02—1,04); малая склонность к закоксовыванию выходных отверстий, так как они периодически могут продуваться паром.
Расход пара в паромеханических форсунках (0,05—0,15 кг/кг топлива) значительно меньший, чем в обычных паровых, что очень важно для промысловых судов. Эти форсунки широко используются в паровых котлах.
Ротационные форсунки также получили широкое распространение на промысловых судах. Для их использования не требуется расхода пара на распыливание мазута, при этом достигается удовлетворительное качество распыливания топлива во всех диапазонах нагрузок (от 5 до 100%).
Распыливающая головка ротационной форсунки:
Основной частью ротационных форсунок является распыливающая головка. Она состоит из стакана 1, закрепленного на валу 6 при помощи крестовины 5 и вращающегося с частотой 5000— 7000 об/мин. Внутренняя поверхность стакана имеет небольшую конусность, вследствие чего мазут перемещается по ней в сторону топки. Топливо под давлением 0,05— 0,07 МПа подводится по неподвижно закрепленной трубе 7 в кольцевую полость и через отверстие 4 равномерно поступает на внутреннюю поверхность стакана.
Достигая выходной кромки, пленка мазута под действием центробежной силы образует конус распыливания. Первичный воздух подается в кольцевой канал 3, образованный неподвижным корпусом воздухонаправляющего устройства 8 и вращающимся стаканом 1. Воздух входит к топку через кольцевое воздушное сопло 9 с большой скоростью (60—80 м/с), что способствует хорошему смесеобразованию. Часто в кольцевом канале 3 устанавливают тангенциальные лопатки 2 для завихрения первичного воздуха.
Мазут и воздух предварительно подогревают. Температура нагрева мазута 70—90 С. Первичный воздух подается под давлением 3,5—4 кПа, вторичный — под давлением 0,3—0,4 кПа. Воздух к форсункам подается различными способами в зависимости от конструкции паросиловой установки. Иногда топливо на внутреннюю поверхность стакана подается по отверстию во вращающемся валу.
Комментариев нет:
Отправить комментарий
Примечание. Отправлять комментарии могут только участники этого блога.